[1] H. Li*, C. J. Firby, A. Y. Elezzabi*, Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule, 2019, 3, 2268. (SCI, IF=29.155, ESIHOT Paper、Highly Cited paper) (Highlighted by Chinese website:https://nyxr-home.com/25609.html) [2] W. Zhang, H. Li*, W. W. Yu, A. Y. Elezzabi*, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light: Science & Applications, 2020, 9, 121. (SCI, IF=13.714) (Highlight ed by AAAS: https://www.eurekalert.org/pub_releases/2020-07/lpcc-tim071420.php. Phys.org: https://phys.org/news/2020-07-transparent-inorganic-multicolour-enabled-zinc-based.html. Chinese Optics: https://mp.weixin.qq.com/s/k90KnCtIEG4W_p5CLZXFjg. ) [3] H. Li*, W. Zhang, A. Y. Elezzabi*, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Advanced Materials, 2020, 32, 2003574. (SCI, IF=27.398) [4] H. Li*, L. McRae, C. J. Firby, M. Al-Hussein, A. Y. Elezzabi*, Rechargeable aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Advanced Materials, 2019, 31, 1807065. (SCI, IF=27.398, ESIHighly Cited paper) [5] H. Li*, L. McRae, C. J. Firby, A. Y. Elezzabi*, Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy, 2018, 47, 130. (SCI, IF=16.602) (Highlighted by LaserFocusWorld: https://www.laserfocusworld.com/optics/article/16555300/transparent-molybdenum-oxidebased-smart-windows-store-energy-like-a-battery; https://www.laserfocusworld.com/detectors-imaging/article/16571711/molybdenum-smart-windows-store-energy-like-a-battery.) [6] W. Zhang, H. Li*, E. Hopmann, A. Y. Elezzabi*, Nanostructured inorganic electrochromic materials for light applications. Nanophotonics, 2020, 10, 825. (SCI, IF=7.491,Invited Review Article) [7] H. Li*, A. Y. Elezzabi, Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horizons, 2020, 5, 691. (SCI, IF=9.927) [8] W. Zhang, H. Li*, M. Al-Hussein, A. Y. Elezzabi*, Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanoparticles. Advanced Optical Materials, 2020, 8, 1901224. (SCI, IF=8.286) [9] H. Li*, L. McRae, A. Y. Elezzabi*, Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Applied Materials & Interfaces, 2018, 10, 10520. (SCI, IF=8.758) [10] W. Zhang, H. Li*, C. J. Firby, M. Al-Hussein, A. Y. Elezzabi*, Oxygen-vacancy-tunable electrochemical properties of electrodeposited molybdenum oxide films. ACS Applied Materials & Interfaces, 2019, 11, 20378. (SCI, IF=8.758) [11] H. Li, J. Li, C. Hou*, D. Ho*, Q. Zhang, Y. Li, H. Wang*, Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Advanced Materials Technologies, 2017, 2, 1700047. (SCI, IF=5.969) [12] H. Li, C. Chen, M. Cui, G. Cai, A. Eh, P. S. Lee*, H. Wang*, Q. Zhang, Y. Li*, Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications. Journal of Materials Chemistry C, 2016, 4, 33. (SCI, IF=7.059) [13] H. Li, J. Wang, Q. Shi, M. Zhang, C. Hou*, G. Shi, H. Wang*, Q. Zhang, Y. Li, Q. Chi*, Constructing three-dimensional quasi-vertical nanosheet architectures from self-assemble two-dimensional WO3·2H2O for efficient electrochromic devices. Applied Surface Science, 2016, 380, 281. (SCI, IF=6.182) [14] H. Li, G. Shi, H. Wang*, Q. Zhang, Y. Li *, Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. Journal of Materials Chemistry A, 2014, 2, 11305. (SCI, IF=11.301) |